@ I D:f46d8e20-5eee-11eb-b8e9-ab28efe0c83f Status: Signerat av dla

Fil

Titel Foreldggande om vite.docx
101 Filnamn Forel&ggande om vite.docx
00 10 Storlek 86.6 kB
11010
Kontrollsumma 9cd4 ch8f fbd4 4cll ab78 0la2 017e 51c3

ce8f 7486 1385 2e0e 1454 b8ea eb9d e748

Filen ovan &r tillagd som en bilaga, alternativt nérarelaterad till de évriga. Den &r, tillsammans med 6vrigafiler en del av det signerade dokumentet. Filen kan 6ppnas
eller laddas ner av samtliga parter, filformatet kan ibland kréva ett specifikt dataprogram som anvandaren behdver ladda ner for att kunna se filen.

Verlfl kat Status: Signerat av ala

Titel: Foreléggande om vite Skapat: 2021-01-25
ID: f46d8e20-5eee-11eb-h8e9-ab28efe0c83f

Underskrifter

Krister Persson 2120000217

Krister Persson

krister.persson@norrtalje.se

Signerat: 2021-01-25 10:26 BanklD KRISTER PERSSON

Filer

Titel Filnamn Storlek
Foreldggande om vite.docx Forel&ggande om vite.docx 86.6 kB
Handel ser

Datum Tid Handelse

2021-01-25 10:23 Skapat | viaAPI.

2021-01-25 10:26 Signerat | Krister Persson, Krister Persson

Genomfort med: BanklD av KRISTER PERSSON. |P: 2.248.79.61

Verifikat utférdat av Egreement AB

Detta verifikat bekraftar vilka parter som har signerat och innehdller relevant information for att verifiera parternas identitet samt
relevanta handelser i anglutning till signering. Till detta finns separata datefiler bifogade, dessainnehdller kompletterande information av
teknisk karaktar och styrker dokumentens och signaturernas akthet och validitet (for tkomst till filerna, anvand en PDF-l&sare som kan
visa bifogade filer). Hash &r ett fingeravtryck som varje individuellt dokument far for att sakerstélla dess identitet. For mer information,
se bifogad dokumentation.

Verifikation, version: 1.12

		[image: Vanst_logo_svart]

		2021-01-14

		[image: Vanst_logo_svart]

		2 (2)

		

Föreläggande om vite

Med hänvisning till Norrtälje kommuns avtal ”Skolskjuts med större bussar” gällande skolskjuts med större bussar, dnr BSN 2019-136, inkommer Norrtälje kommun med föreläggande om vite på totalt 1 310 000 kr jämte ränta.

[bookmark: _GoBack]Grund

Bergkvara buss har vid flertalet tillfällen tankat fossil diesel vilket strider mot vad som står i avtalet. De har även saknats automatisk släckningsutrustning i motorutrymme.

I enlighet med avtalet ska krav på vite utkrävas vid dessa brister med 5 000 kr per tillfälle.

1.	Tankat fossil diesel vid 94 tillfällen (varje tillfälle är förenat med vite á 5 000 kr).

2.	Fordon som saknat automatisk släckningsutrustning i motorutrymme 168 tillfällen (varje tillfälle är förenat med vite á 5 000 kr).

	

Norrtälje kommun emotser betalning av aktuellt vite inom 30 (trettio) kalenderdagar från dagens datum.

[bookmark: Start]

Med vänlig hälsning

Krister Persson tf upphandlingschef

[bookmark: Sidfot]POSTADRESS	BESÖKSADRESS	TELEFON	E-POST	PLUSGIRO

Box 800, 761 28 Norrtälje	Estunavägen 14	0176-710 00	kommunstyrelsen@norrtalje.se	3 20 65-5

ORGANISATIONSNUMMER		TELEFAX	WEBB	BANKGIRO

212000-0217		0176-711 04	norrtalje.se	451-7694

		norrtalje.se	KOMMUNSTYRELSEKONTORET

image1.jpeg

NORRTALJE
KOMMUN

[{
 "agreementId" : "f46d8e20-5eee-11eb-b8e9-ab28efe0c83f",
 "agreementName" : "Föreläggande om vite",
 "agreementVersion" : "1.12",
 "agreementFiles" : [{
 "fileName" : "Föreläggande om vite.docx",
 "fileMimetype" : "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
 "fileSize" : "86593",
 "fileTitle" : "Föreläggande om vite.docx",
 "fileHash" : "9cd4cb8ffbd44c11ab7801a2017e51c3ce8f748613852e0e1454b8eaeb9de748",
 "fileId" : "f46fd810-5eee-11eb-9b5d-43d7e31fea35"
 }],
 "signees" : [{
 "personName" : "Krister Persson",
 "country" : "SE",
 "orgName" : "Krister Persson",
 "personSurname" : "Persson",
 "orgNr" : "2120000217",
 "personGivenName" : "Krister",
 "email" : "krister.persson@norrtalje.se"
 }],
 "time" : "2021-01-25T10:23:21.000+0100",
 "type" : "api",
 "user" : {
 "personName" : "API API_KEY",
 "orgName" : "e-Avrop AB",
 "ipAddress" : "10.0.57.12",
 "orgNr" : "5565338133"
 },
 "eventId" : 12,
 "eventClass" : "agreement_created",
 "id" : "f79051f0-5eee-11eb-8f3b-cb234b2bc474"
}, {
 "id" : "2552cc30-5eef-11eb-8204-a36f41f8e32e",
 "time" : "2021-01-25T10:24:38.000+0100",
 "eventId" : 20,
 "eventClass" : "agreement_viewed",
 "user" : {
 "personName" : "<Non authenticated user>",
 "ipAddress" : "2.248.79.61"
 },
 "type" : "web",
 "partyInfo" : {
 "personName" : "Krister Persson",
 "country" : "SE",
 "orgName" : "Krister Persson",
 "personSurname" : "Persson",
 "orgNr" : "2120000217",
 "personGivenName" : "Krister",
 "email" : "krister.persson@norrtalje.se"
 }
}, {
 "signeeInfo" : {
 "personName" : "Krister Persson",
 "country" : "SE",
 "orgName" : "Krister Persson",
 "personSurname" : "Persson",
 "orgNr" : "2120000217",
 "personGivenName" : "Krister",
 "email" : "krister.persson@norrtalje.se"
 },
 "signingMetadata" : {
 "personNr" : "197106274157",
 "personSurname" : "PERSSON",
 "signature" : "PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiIHN0YW5kYWxvbmU9Im5vIj8+PFNpZ25hdHVyZSB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC8wOS94bWxkc2lnIyI+PFNpZ25lZEluZm8geG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzIwMDAvMDkveG1sZHNpZyMiPjxDYW5vbmljYWxpemF0aW9uTWV0aG9kIEFsZ29yaXRobT0iaHR0cDovL3d3dy53My5vcmcvVFIvMjAwMS9SRUMteG1sLWMxNG4tMjAwMTAzMTUiPjwvQ2Fub25pY2FsaXphdGlvbk1ldGhvZD48U2lnbmF0dXJlTWV0aG9kIEFsZ29yaXRobT0iaHR0cDovL3d3dy53My5vcmcvMjAwMS8wNC94bWxkc2lnLW1vcmUjcnNhLXNoYTI1NiI+PC9TaWduYXR1cmVNZXRob2Q+PFJlZmVyZW5jZSBUeXBlPSJodHRwOi8vd3d3LmJhbmtpZC5jb20vc2lnbmF0dXJlL3YxLjAuMC90eXBlcyIgVVJJPSIjYmlkU2lnbmVkRGF0YSI+PFRyYW5zZm9ybXM+PFRyYW5zZm9ybSBBbGdvcml0aG09Imh0dHA6Ly93d3cudzMub3JnL1RSLzIwMDEvUkVDLXhtbC1jMTRuLTIwMDEwMzE1Ij48L1RyYW5zZm9ybT48L1RyYW5zZm9ybXM+PERpZ2VzdE1ldGhvZCBBbGdvcml0aG09Imh0dHA6Ly93d3cudzMub3JnLzIwMDEvMDQveG1sZW5jI3NoYTI1NiI+PC9EaWdlc3RNZXRob2Q+PERpZ2VzdFZhbHVlPlR1THdFUTNzQzJmTGFTRm5oaWx1NU0xUmdqK3AyTkVpRFRGdWNYS2J5blk9PC9EaWdlc3RWYWx1ZT48L1JlZmVyZW5jZT48UmVmZXJlbmNlIFVSST0iI2JpZEtleUluZm8iPjxUcmFuc2Zvcm1zPjxUcmFuc2Zvcm0gQWxnb3JpdGhtPSJodHRwOi8vd3d3LnczLm9yZy9UUi8yMDAxL1JFQy14bWwtYzE0bi0yMDAxMDMxNSI+PC9UcmFuc2Zvcm0+PC9UcmFuc2Zvcm1zPjxEaWdlc3RNZXRob2QgQWxnb3JpdGhtPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxLzA0L3htbGVuYyNzaGEyNTYiPjwvRGlnZXN0TWV0aG9kPjxEaWdlc3RWYWx1ZT5yaGJhSnV3aFB2Z1ExaXNOUVN0cng2b2pVc1lidGJrd2NqaDIxbGc3NUg4PTwvRGlnZXN0VmFsdWU+PC9SZWZlcmVuY2U+PC9TaWduZWRJbmZvPjxTaWduYXR1cmVWYWx1ZT5KM2hoTHNmMlRsNzhLV2JRYlQ4L09WWThuZ3V2dzQ0WllFMzJPTHhFL01sUllSSW5FOVB2RnlOTEpuOTNKVlFuZWJuLzUxWmtMWjFCNGJ1bms4V2o3RjZmMSszbG1zaWNnMFREcWlhRE12N3EydDFqa08yVmkvbGp0Ujl0VnpWNFJXV2ZZbENteDVidkEzNVRwblF6UjJPczZiaEhQaHhlL0ZFVTdVNk55SEViWVRVV0Q5MXhYMkJNZEt3TUYzZEJXSVRvSXB3eVZFUUJTaEpBQnYzWFkyck1RVGRaaFFreDYvby9ZM2loQTlLQ2djQzYvRmZIZ0JyRHVIcjZmS3BteTRIU2hkUi9QSDk0SUxYV1pXeE04dTNDZWlSSlNoa1BrdCtZQmxidEd2cUZGUXc4NWZxRnhBSzdJQVROM3pPQ2dqajNvaW1LVWNxcXVEd3JId2x2b1E9PTwvU2lnbmF0dXJlVmFsdWU+PEtleUluZm8geG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzIwMDAvMDkveG1sZHNpZyMiIElkPSJiaWRLZXlJbmZvIj48WDUwOURhdGE+PFg1MDlDZXJ0aWZpY2F0ZT5NSUlGVGpDQ0F6YWdBd0lCQWdJSWFIVE93N1d0ZjZFd0RRWUpLb1pJaHZjTkFRRUxCUUF3YlRFTE1Ba0dBMVVFQmhNQ1UwVXhHekFaQmdOVkJBb01FbE4zWldSaVlXNXJJRUZDSUNod2RXSnNLVEVUTUJFR0ExVUVCUk1LTlRBeU1ERTNOemMxTXpFc01Db0dBMVVFQXd3alUzZGxaR0poYm1zZ1EzVnpkRzl0WlhJZ1EwRXpJSFl4SUdadmNpQkNZVzVyU1VRd0hoY05NakF3TXpBeU1qTXdNREF3V2hjTk1qTXdNekF6TWpJMU9UVTVXakNCdURFTE1Ba0dBMVVFQmhNQ1UwVXhHekFaQmdOVkJBb01FbE4zWldSaVlXNXJJRUZDSUNod2RXSnNLVEVRTUE0R0ExVUVCQXdIVUVWU1UxTlBUakVRTUE0R0ExVUVLZ3dIUzFKSlUxUkZVakVWTUJNR0ExVUVCUk1NTVRrM01UQTJNamMwTVRVM01UY3dOUVlEVlFRcERDNG9NakF3TXpBeklERTVMalU1S1NCTFVrbFRWRVZTSUZCRlVsTlRUMDRnTFNCTmIySnBiSFFnUW1GdWEwbEVNUmd3RmdZRFZRUUREQTlMVWtsVFZFVlNJRkJGVWxOVFQwNHdnZ0VpTUEwR0NTcUdTSWIzRFFFQkFRVUFBNElCRHdBd2dnRUtBb0lCQVFEWWJraG1LL3pYaSsxOUxmWHR3aW1aWTBMaHZRREpKRkVNWEp5L2ovK0RQRVFNbmZwRk9oMFpSZm9zVW5XbjEwRU11UGdQblE4RDgvNldETVNjWE1yYkJrajFRRW4zanFSTHFmWkRnT2pSTDlzOHdFMjNrWlZTVGxzcTNiZHJyNkhSanJEODZ6Qk1RYmZPQ1ovc3ZXM3dzM25MekFYMCtBT0s2Njc1d0ZwK0c2T2NTMVZRMmZFTFF0ZS9YTXRxMWZkbTAvUWR2dGM4VEMxcmJvM25ST1FYajYwMXBzL3ZLcEMrYjJXb2lpUUNLeXR6VjRRWm9ISE1IaThDc3MwZXpXaklqVXhQeVJjNU9qWTlSd1V0NStDTHBxZVRZZ3JacVhMN1N2dStCTjFGZFNYWnJ2NkFORnpFaFB4MHhjR2FLZTNHbUQzTU1UNmhrMjJqNUY0ME5CVlZBZ01CQUFHamdhVXdnYUl3T3dZSUt3WUJCUVVIQVFFRUx6QXRNQ3NHQ0NzR0FRVUZCekFCaGg5b2RIUndPaTh2YjJOemNDNXlaWFp2WTJGMGFXOXVjM1JoZEhWekxuTmxNQk1HQTFVZElBUU1NQW93Q0FZR0tvVndUZ0VGTUE0R0ExVWREd0VCL3dRRUF3SUdRREFmQmdOVkhTTUVHREFXZ0JSM3BBaldycjEwSS9nRHc5ZlpYbWo0SUczQ01qQWRCZ05WSFE0RUZnUVVYQzl5UzR6ZFA1c1ZVQVpZWWV3a0l1Y3NkdVV3RFFZSktvWklodmNOQVFFTEJRQURnZ0lCQUp6eDV0NHMxSXB3a0xUc1Z1N0Ezc1hRNUhuRVg4bUt0dEFnU3pTY1JNZGtpYzI0ZHFwUFdsT2o2eXZVc1IrTXZCTmxVNXVPMTlLSkJDbGRzUEtXc2IwcGt2ajhabHkrUnVRZHFaQ0MyaUI0Vkdsa090QlArVURLUVZlRUV2QjJueDV3aUVzL1FUdXJsem5HK3lXR2VRQXh4clU5b0lXM3NvM0U5TFpiN3Q3Vjd6SkZDbElxK0VVdkV0UzZWdUE3WWRxaVphajdvdEhYVmUzWEhBSHdtV3FwQlUrYjV5RmRpbXBncENEZzBLYmF2TUEzRDRERUFKV2pyN1BmZFRpd1lncjRSQ1czZ3daNHMybi9pWTV3WFd1aUpaRnJSV2tRM1N5OE04cFMxMWh6ZnM1cVJZTlVIVVluRUtNR00xcGRpYXFBeGFFZjFMVUtNVmpHZFJXdTA1b2tmWWdkVUx1R3QzWDFUS3dvZnJ1V0d4ZC85T2FwM01PNGFOYTY1TnhkTisydW9CTG5veWVDOUllcXN4WnMvWnZyVGpZbndPcGI0RFV5Q3FzOWc0RzZWMWZmNzBkcnE2ZXFmek91UHIxUndpZ3p4NXZwKy9qZjRmN0plV3JaaUlaSWhwZUdlbUpMaDFtakN6TDQyRmJLQTB1ZEZtMFd3cWJ6NW9SczhHY3lwUHlHZFRmWEhBbHNPOHVGUUpNNWkzajFUV3hRbUMwVUNKaThwYitoQnRBSy9pLzNPcmd4WTNMaXR6bVl5UUZGQ0lad0lPeWtwa2xlRVJIdnRYUFVXb2JjMFMvdk1qNWZqbWNMZXRtT05Galk5K0ZpQWswVFNhTDdmVUVHSVhRQ3ZLZUZ0SjlJQU1yeXZySmVMNEY0UzdjczlCd2pjZnV2N2hBOVBXZVhwa3Q3PC9YNTA5Q2VydGlmaWNhdGU+PFg1MDlDZXJ0aWZpY2F0ZT5NSUlGeWpDQ0E3S2dBd0lCQWdJSU5tUmZUd3Z3czJFd0RRWUpLb1pJaHZjTkFRRU5CUUF3WXpFTE1Ba0dBMVVFQmhNQ1UwVXhHekFaQmdOVkJBb01FbE4zWldSaVlXNXJJRUZDSUNod2RXSnNLVEVUTUJFR0ExVUVCUk1LTlRBeU1ERTNOemMxTXpFaU1DQUdBMVVFQXd3WlUzZGxaR0poYm1zZ1EwRWdkakVnWm05eUlFSmhibXRKUkRBZUZ3MHhNakV5TVRNd09URTRNREZhRncwek5ERXlNREV3T1RFNE1ERmFNRzB4Q3pBSkJnTlZCQVlUQWxORk1Sc3dHUVlEVlFRS0RCSlRkMlZrWW1GdWF5QkJRaUFvY0hWaWJDa3hFekFSQmdOVkJBVVRDalV3TWpBeE56YzNOVE14TERBcUJnTlZCQU1NSTFOM1pXUmlZVzVySUVOMWMzUnZiV1Z5SUVOQk15QjJNU0JtYjNJZ1FtRnVhMGxFTUlJQ0lqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FnOEFNSUlDQ2dLQ0FnRUF4WFFadmYzL2dVZElPTmRmRFF1QjFwNEYweVNxMkpOVnNzL01WTVY2anF0cmk4bDNBeUwvMW1BNFdSbGVON3RrY2tGb1Rpa01ZSmE3NmdsdUxSZmYzSDZDQ05KOFhXeFloeWxZZzhzd0F0Z3FMd2Y3L0s0b1B6RGtyNE9QSFlwaHcwTjdubXUybGhCUkF3bld2aDZuYXduWko4Skp1VXpac3VxQVVmUjJpVEZlNHVSSkpmWTN2bm0wdFFZQXVOclNrYmpTUWVZb216N3hFcUozMm9DRTZuOFRGdUR4M3RMM0VMSE1YMTlobk8ra2tyMVVZZGxRSGtML3M0SHI2aFFtUDQvZ1J3bjF0Q3N4Z1c4eGo2YTJma0NxQ3VEb1hrK2U2Y256ZzlKVkJZUjBVeGR2L3BzM204ZThGVEtIb2hHOEdZbTVuQUExenZYRittZzltbGdYSHBhNkFZZWN2K2FNbGJ2MWtwNGc4a3NTMzBBVWNVaG5NV0wvYnZ5NDFNc0NPU0d0dk9mL2RVOVBrUnE5cHFub2RFeTk5MU1LTXFMU3ZwWHFBandkdjZ6Tk5oVEhYUHVLaU85eTVuTHZQUW50YUpGdi9laWVNUUx2VE1NSkc3U09ZaXNHQlEybS8yYTNlSXJFbWhXd2Y2Y3dEMnRVSGNHTzhDekVzTmdlRjUzcHhnTnNMNXFOUjhaTDVmeVFVeTdVZ2cwbFRoSkFkWWkyejduMXlIdG9GZ1RJN2M2WDIyZW5sU2owOHh5Um50Z3kzTjRnQThVQ3c1SDdEUGZiQ2VPa0EvOGFxVzVrcjJoQjlBeGM1WFJpRnRlTmxsVHAvYTVMdXppcEo5SzRJQlJFTjQ2blYrM1ZISllKWUFyMG1zMm5Vdnc4WmdWT0JLRU5VRFhHK1o3THIra0NBd0VBQWFONE1IWXdIUVlEVlIwT0JCWUVGSGVrQ05hdXZYUWorQVBEMTlsZWFQZ2diY0l5TUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3SHdZRFZSMGpCQmd3Rm9BVWVEMUJLR000MTdLRlJyalkraHpJNUtUZDJzTXdFd1lEVlIwZ0JBd3dDakFJQmdZcWhYQk9BUVV3RGdZRFZSMFBBUUgvQkFRREFnRUdNQTBHQ1NxR1NJYjNEUUVCRFFVQUE0SUNBUUJMWVJaQTIwMmxyZlh3VFRIV29PejdaeFRpYXZTSTIzYVJZRWc3cDdYM0RvSFdtQjROTGd0dTh3VUJwZDlRZkJ3NmRjNzd1ZTdZQkg0UEdrbDVqRlE3NjBMSzRDb1E2QmlZR05sUUhBdUhZL3ZwYzFidUFyN1ZkbkRTYWUzSG1NNjNnalZKR0srS1FHZDBQSHFPNnZYMWhEUHgwUnRXbWY1T2pBUENPMDNDcHZFNWY1dm1lVjFjMXRZVThXNGpxVk4xM3NpZlVrTEhtNWJKUHljcDNzS0V0M0laMU5LVzZkeG5rOVhGTGFkdWtGNEpDOFZ6WjNqT3EwRkVFTkRWR1hmRkZuMlB3Y255eWg3OUhrMHdSOHFPUzlaUjhhOFFNLzA4Mko3ZzZIY0JibkJWMGFtYUt1SmNxSlQxbDkrK0g5Zk5hT2hraEdyWGxVU3p2bTVnNVJiY1dRUjgrUk5GMzdzeE8wN3FxaVNuZTNVMlVta2VaOWxYMktieGhObUpaMitYZmlMRzM3YVJUbE9OTUVxeHN6ZEN0a2h3SlNmUnFTa2UrT01wQnVMZmlxak1NcHBCVUJDdURRUGVRK2hMclIwaHcvdXZpbk03NitUM00wWTIrVDNLUmwrVFhvTjhndHYwbU1PZVdxOUxUSHZvbGdlMkVUMitxM3RwSk1BZEZHcTVic0JHOXdIQ2FoNllkakhJTEhUZE1TT0hiY01nUENCM2o1QkJudFFMN3JzanBjRHphREVPUG5qRmJWcGIxYjUzVTVETW92Z1B1WjM4NjhQSGloR0RqQysyY1BmOWlrVnk3dmFiaTYvMUZTbzMxaDJXTFVmNGF1K09kUjd1K3F2ZUZjQUd5TGNBVDJ3cXJ5dFA1RlpKQkZqQ29OOFcyYVVRYis4SzM1L1JWQT09PC9YNTA5Q2VydGlmaWNhdGU+PFg1MDlDZXJ0aWZpY2F0ZT5NSUlGd0RDQ0E2aWdBd0lCQWdJSUE3c0xRVEVoenVvd0RRWUpLb1pJaHZjTkFRRU5CUUF3WXpFa01DSUdBMVVFQ2d3YlJtbHVZVzV6YVdWc2JDQkpSQzFVWld0dWFXc2dRa2xFSUVGQ01SOHdIUVlEVlFRTERCWkNZVzVyU1VRZ1RXVnRZbVZ5SUVKaGJtdHpJRU5CTVJvd0dBWURWUVFEREJGQ1lXNXJTVVFnVW05dmRDQkRRU0IyTVRBZUZ3MHhNakV5TURjeE1qTXlNelphRncwek5ERXlNekV4TWpNeU16WmFNR014Q3pBSkJnTlZCQVlUQWxORk1Sc3dHUVlEVlFRS0RCSlRkMlZrWW1GdWF5QkJRaUFvY0hWaWJDa3hFekFSQmdOVkJBVVRDalV3TWpBeE56YzNOVE14SWpBZ0JnTlZCQU1NR1ZOM1pXUmlZVzVySUVOQklIWXhJR1p2Y2lCQ1lXNXJTVVF3Z2dJaU1BMEdDU3FHU0liM0RRRUJBUVVBQTRJQ0R3QXdnZ0lLQW9JQ0FRRGFuU2UrYnJKcjJrdi91cGZWUTdlcEd5QUJYMTdqY1N5ZGJoWVZRWGFHc05GYjgxRkJKK2FweFU5LzFhSlljQitIaUREMXJ6Mkh0cFJaRXpMbFRyQjVCeSs5bEFmYUsxZHdpZFBnUzRMWnJzUC90ZHZTUzI1ckdBbXNBM0hpdVgyUUpJUDh6ajBrSDNMWDM3ZmdkZDMzOHhweFZlbnBIVXE1RG1yUU8rZGZOT0JTUUdTREpNUnBqcU54RTVZeWRkRFlKcFVjMTB5WFo2bWJEeEJvaGhIWXlkdVFLVjFZTXpUcHB3TG1hVEtBVXVHOXAzSmdmR2ZVeUN6L2dzVEZWb2E1bFZVVEdUUXpMSThlRVg3R2FlaWdYd1JVc0dMcGFLUVErbDU2d2Fnck9Lc1NxWWgzU2JWRStNU2sycDMyTmxlMWhqL1hZRUN0VU14blZXV2twUVFEOWRjVFp4TVhGSzc3MHdhajcra0FiS1AyajZpUDNhSGltWnFqcEVrUTJMQldXOVIrVkt1QUNtSmZUVy9ucFprMlZ6SXhESENDSHE4dDFjd3VUVFMwdmdMb0ZnWElwaHloV0ljUWVUNmFMTm1UMGVQQkhjY3BNdVI2UG9HeEhlVzFTNExTT0F4RkEwQzJLQzZ6eUlRdjIwV1BwdFRvYzNlRFU5MjY3eEpNNU1PODFGcHd1RTZiZ1JMZzUvenU1anhlZi9DTUpmUmM3OWNSSGhXTVhWdkZtRk5FRnVMZFdpVXd2QlpqUW9wcnlpK29LdnhPMng0U3lSOTlFcElFWmtlZjF5MktaZ3ErOFBZWTJZL00yd2tVWStISnd6aHd1ZXpudnpyMk5JV1kyZnNTOXB6dkFEb2ZFdzNTeGRzZU12NkhPbDFyWXRWNDVSa3FFeTFuc0ZqV0xRSURBUUFCbzNnd2RqQWRCZ05WSFE0RUZnUVVlRDFCS0dNNDE3S0ZScmpZK2h6STVLVGQyc013RHdZRFZSMFRBUUgvQkFVd0F3RUIvekFmQmdOVkhTTUVHREFXZ0JSbmlycXk2a2djZXZVN2FEY25jZ2Jya1dQTFV6QVRCZ05WSFNBRUREQUtNQWdHQmlxRmNFNEJBVEFPQmdOVkhROEJBZjhFQkFNQ0FRWXdEUVlKS29aSWh2Y05BUUVOQlFBRGdnSUJBQVkzYzZvRGQvUXVEamNQQW1rL2h4dDhlWXlNRXpnUzRNVUJERkFFYUlNNDY1N0VLRXAweFU2SnhJRnBvRjUvUmR5Vy8vanZWaXFBM3JiVVdZbm9BQ3owOW9pQ1Fnam5hWkpnSERPUSt0Nmcra1YyVm5FSkdHby9VRDZ4Y25KQ0ZtZGtFS3d4ZzRuai9rYjFWUnRQalppd0FLbzFhUjFDalZTaTlLRUFVaW5RelczSE1ueENYOXNjOVppOHhFZnJCU1ZraDJoVTZZSjNpTWI4VVRHV3VHMjJEUkJ5ZDM0U01DSTJjUU9ZWFZ6Mk1kNWp6S3dNTXJLWGlqQlhIbU1TVGhGbFBuR2NSdmhxQ3YzMjdXazFTWFBPNXoya1pKRUg1N3RUTWo2RTAxSGFGZ0NzZ2FqemFOblo4akFFNEpNSHFsZUEyVldjSEFYajhtckhIR1VWbEx6N1c2UkdBeHlzcE9DeHRKeEkxQVFNSVBYZGhaQkIxeDRwb2lHdURWOE1JN0NGZ3dhbmQrMWxtbTdrbWpnWW5QUktOdUdLTzVDdE9GZnZsNjUzYWt0RWNVYlJTaXc5L3VlbW81Tkk0UFg0c1d6VW0zL2FEb2tTT0dhVGZSTzhwYm1qTkJTaW1XRTI0NUQ0L0dzQ3JHdVA2RTJNdmtVaXhTT0FUeHg3Y2FzUHFrbGxWTzZ6eUxSV3JTN3poQXhRb3hSOE5xQ25SUW9Vb2E5M081dGdzaTFCY1NlbmhydFNhQ2kzZnZWbVkrNlZITmI4SFFpL2xHbnpUdFgzZ1ZJdURIcVcvajJxOWsyS3Q4anlxeHVIUElHK0lxbGxzMmxTYUdwME9wM0tYUVljYjhiKzFNZ0d0TWhlenNyalpORkxEcXZoSkFKMnpWMXJsZ3VTOVdCV3ArcVc8L1g1MDlDZXJ0aWZpY2F0ZT48L1g1MDlEYXRhPjwvS2V5SW5mbz48T2JqZWN0PjxiYW5rSWRTaWduZWREYXRhIHhtbG5zPSJodHRwOi8vd3d3LmJhbmtpZC5jb20vc2lnbmF0dXJlL3YxLjAuMC90eXBlcyIgSWQ9ImJpZFNpZ25lZERhdGEiPjx1c3JWaXNpYmxlRGF0YSBjaGFyc2V0PSJVVEYtOCIgdmlzaWJsZT0id3lzaXd5cyI+U21GbklIVnVaR1Z5ZEdWamEyNWhjam9nSWtiRHRuSmxiTU9rWjJkaGJtUmxJRzl0SUhacGRHVWlJQXBKUkRvZ1pqUTJaRGhsTWpBdE5XVmxaUzB4TVdWaUxXSTRaVGt0WVdJeU9HVm1aVEJqT0RObUNrUmhkSFZ0T2lBeU1ESXhMVEF4TFRJMUNnbz08L3VzclZpc2libGVEYXRhPjx1c3JOb25WaXNpYmxlRGF0YT5MUzB0TFMwdExTMHRMUXBKYm01bGFNT2xiR3c2Q2dvaVJzTzJjbVZzdzZSbloyRnVaR1VnYjIwZ2RtbDBaUzVrYjJONElnbzVZMlEwSUdOaU9HWWdabUprTkNBMFl6RXhJR0ZpTnpnZ01ERmhNaUF3TVRkbElEVXhZek1nWTJVNFppQTNORGcySURFek9EVWdNbVV3WlNBeE5EVTBJR0k0WldFZ1pXSTVaQ0JsTnpRNENpMHRMUzB0TFMwdExTMD08L3Vzck5vblZpc2libGVEYXRhPjxzcnZJbmZvPjxuYW1lPlkyNDlSV2R5WldWdFpXNTBJRUZDTEc1aGJXVTlSV2R5WldWdFpXNTBMSE5sY21saGJFNTFiV0psY2owMU5UWTNNREEwTXprMExHODlSR0Z1YzJ0bElFSmhibXNnUVZNZ1JHRnViV0Z5YXlCVGRtVnlhV2RsSUdacGJHbGhiQ3hqUFZORjwvbmFtZT48bm9uY2U+QTcwQVRlNzBVZ09CWnF0anZpMm44bU1JSEM4PTwvbm9uY2U+PGRpc3BsYXlOYW1lPlJXZHlaV1Z0Wlc1MDwvZGlzcGxheU5hbWU+PC9zcnZJbmZvPjxjbGllbnRJbmZvPjxmdW5jSWQ+U2lnbmluZzwvZnVuY0lkPjx2ZXJzaW9uPk55NHlNUzR3PC92ZXJzaW9uPjxlbnY+PGFpPjx0eXBlPlFVNUVVazlKUkE9PTwvdHlwZT48ZGV2aWNlSW5mbz5NVEU9PC9kZXZpY2VJbmZvPjx1aGk+anRFZ3NRU3FMbXN5YXVCb2FDcTdVdEdrNEwwPTwvdWhpPjxmc2liPjA8L2ZzaWI+PHV0Yj5jczE8L3V0Yj48cmVxdWlyZW1lbnQ+PGNvbmRpdGlvbj48dHlwZT5DZXJ0aWZpY2F0ZVBvbGljaWVzPC90eXBlPjx2YWx1ZT4xLjIuNzUyLjc4LjEuNTwvdmFsdWU+PC9jb25kaXRpb24+PC9yZXF1aXJlbWVudD48dWF1dGg+cHc8L3VhdXRoPjx0b2tlbj50b2tlbi1ub3QtdXNlZDwvdG9rZW4+PC9haT48L2Vudj48L2NsaWVudEluZm8+PC9iYW5rSWRTaWduZWREYXRhPjwvT2JqZWN0PjwvU2lnbmF0dXJlPg==",
 "ocspResponse" : "MIIHYAoBAKCCB1kwggdVBgkrBgEFBQcwAQEEggdGMIIHQjCCASOhfDB6MQswCQYDVQQGEwJTRTEbMBkGA1UECgwSU3dlZGJhbmsgQUIgKHB1YmwpMRMwEQYDVQQFEwo1MDIwMTc3NzUzMTkwNwYDVQQDDDBTd2VkYmFuayBDdXN0b21lciBDQTMgdjEgZm9yIEJhbmtJRCBPQ1NQIFNpZ25pbmcYDzIwMjEwMTI1MDkyNjIwWjBcMFowQTAJBgUrDgMCGgUABBTaHcRc6oZJylJO+e3rt+UyJtpuqAQUd6QI1q69dCP4A8PX2V5o+CBtwjICCGh0zsO1rX+hgAAYDzIwMjEwMTI1MDkyNjIwWqECMAChNDAyMDAGCSsGAQUFBzABAgEB/wQgAZuyAhATO60MajW7XxCxKZR5PzQTEtyyrJmDYLbQXHMwDQYJKoZIhvcNAQEFBQADggEBAGenVviKKdg2zHsJM3c1t811vYmIPX0+lpUYqvUuxkcLPkJ0vHK2ecbEFO3s7oGV3vgxj59HxK9ieyXbTPyOlO4MT4PYt6jqB1ZxkAt2IM5GFi+7D4y8oHR9M9u2dyUpeiLt9pa9SIcsKD3A2CWZmKD+bClKsOIJKpEjOi9RjYfD1/qhuku3pEB39UYeWtTS9Xn/AcwqP9Y9arD4eQcRiNHdGKjkiq/0/OHKTNhPwbTK3ipid9a+pVIAQ0OG8FH819VvFWK3knOfmhNFM1MrESocw0Q0d5J658CvDgOqH0ts5RAa4c7vXefWMY3fCRvGFcLsVMh9CodgG3VaHIQbUbegggUDMIIE/zCCBPswggLjoAMCAQICCBZpHv6ANUPAMA0GCSqGSIb3DQEBCwUAMG0xCzAJBgNVBAYTAlNFMRswGQYDVQQKDBJTd2VkYmFuayBBQiAocHVibCkxEzARBgNVBAUTCjUwMjAxNzc3NTMxLDAqBgNVBAMMI1N3ZWRiYW5rIEN1c3RvbWVyIENBMyB2MSBmb3IgQmFua0lEMB4XDTIwMTEwODIzMDAwMFoXDTIxMDUwOTIxNTk1OVowejELMAkGA1UEBhMCU0UxGzAZBgNVBAoMElN3ZWRiYW5rIEFCIChwdWJsKTETMBEGA1UEBRMKNTAyMDE3Nzc1MzE5MDcGA1UEAwwwU3dlZGJhbmsgQ3VzdG9tZXIgQ0EzIHYxIGZvciBCYW5rSUQgT0NTUCBTaWduaW5nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzybUobr4cx7S9AGWBzf+Uw6IMBSwp/P9EXxC0eS1Qo0Q3aQLZH79sWWFg2HDb+Edii6HPiwqkZ3x0BjeDjk2KlAx40W/LWnmLu1Gwbu7/ptiRT3IyEYM20jlEjcicZp1p9Y5RPoO9cE5m6YObhgN3PELmjEs9rgiPJJ2hf6Swy4XTsv1ZABbRmXbFSefFHTWEm7mO9dPO4JgOD5JCr3DEyUPIABiot8eWOOck3w1lKYDLOR25RR8gAJHGNZ0V0UKWTWE0zIiylOqG/9DCUwGDCrhxWB3GIHlUDCvq0jL6ngUSrlo4JukMBR9tdJOrzRZSSrEyDr4B08P3uaw2+OXcQIDAQABo4GRMIGOMBMGA1UdIAQMMAowCAYGKoVwTgEBMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMJMA4GA1UdDwEB/wQEAwIGQDAPBgkrBgEFBQcwAQUEAgUAMB8GA1UdIwQYMBaAFHekCNauvXQj+APD19leaPggbcIyMB0GA1UdDgQWBBQlxA1lBb1WTxnVsEBLG3KvffT3rTANBgkqhkiG9w0BAQsFAAOCAgEAWxhFyFS2cynZWYs94/XUbd5nDfsgZeBt3Rgg08mVVtlXjYVhKKYTj6OKuGn7FA4azUk3ChJTQLYK0X9J2skKhCRnBW5uVWBH6G20Z18587LSIU9IwY2N3/Up6l9DuGEvp6o9xUMQY/Ld9vTR/rW5LuXslGQh/S3gNnfIwM/mH/uv7ctRvHbnGatVC2k3k29TW8KGbJy7Hp62MizAksK5lFhnvSh1QiNZrTKBl83ESXq7i/zPsGYfTWDdtC66CUAOZVGkDoINfaKrc01L2phLV09JzIkv3cStujWTN4vfTOP/Y9GsrJaq/IyImOyBZZEekzt7C74k8ZGmBrq7oFFNYAeKqtnGR/saekPShvUAvV1m6Uc5eqiDrRB3CkyDzANCdpz4vvpeidw75utUY5uOr3zSd3eprbKbOcxjpQ+rUaBtGYrcvd0cNiYapvXxYUZfpjazO1Us83uSypU1hMcCEXuRb1VD3xDOdoZ3MCvGRgXkDeQswqulKXfUoNuvTLeLDgDfq2ENMZEtJhk993VeQU9iVvOjI7LZ629NJ1r6WH0jq+HmScBL3YmGrVOh5bCIsiYJAfsxNl7LMy3PVDfI44vrrNeRdxyIwjeKqCDfyp/5gMl14DsFHUfnlja5R2Ts/vTejvVs80ZzLK4wm+y/bKLvFTckhWcO7m8PNCoaLSo=",
 "signatureMethod" : "bankid-otherunit",
 "personGivenName" : "KRISTER",
 "transactionId" : "6c02cc081cec7872",
 "startDate" : "2021-01-25T09:24:42.319+0000"
 },
 "time" : "2021-01-25T10:26:21.000+0100",
 "type" : "sign_final_part",
 "user" : {
 "personName" : "<Non authenticated user>",
 "ipAddress" : "2.248.79.61"
 },
 "eventId" : 31,
 "eventClass" : "agreement_signed",
 "id" : "62c0cf90-5eef-11eb-ab05-b1fc20fc760f"
}]

Overview

Egreement AB

Version 3.0.106, 2020-11-10

Table of Contents

PULPOS . . o e

(k7<) 72 175

Agreement Creationttt ittt ettt e e e e e e e
Agreement FIles . ..o e
CONEraCting Partiesottt et e et e e et et
SIgNATUTE Creation. . .ottt ettt et ettt e et e e et e e e e e e e e
DOWNIOAAo e
770 - =8 1 (P
)Y 01 L= PP

Reference DOCUIMEN AtION & .ottt ettt e e e e et e et et e e e e

Purpose

This document gives an introduction to the collection of reference documentation added to each
agreement signed using Egreement’s service. In case of agreement disputes, this documents and its
referrals should be used as a handbook on how to verify agreements.

Overview

Agreement and workflow basics are introduced in this document in order to be able to understand the
reference documentation.

Glossary

Term Description

Agreement File Attachment to the agreement, for example an
uploaded PDF, image, or free text, entered by
agreement creator.

Agreement Creator User who creates the initial agreement and add
contracting parties.

API Application Programming interface

Audit Log The log of events associated with each agreement.

CMS Cryptographic Message Syntax

Container The file which holds the agreement including all

metadata such as audit log, documentation,
verification, Etc.

Contracting Party User who is to sign an agreement.

Egreement The company providing the agreement signing
service. Egreement AB,
https://www.egreement.com

EID Electronic identity such as a certificate or online
identity of some kind.

Hash A cryptographic hash, see Signing
JSON JavaScript Object Notation

NTP Network Time Protocol

OCSP Online Certificate Status Protocol
PKCS Public Key Cryptography Standards

https://www.egreement.com

Term Description

PKI Public Key Infrastructure
PDF Portable Document Format from Adobe Systems
Signee When a contracting party has signed an

agreement, the party becomes a signee.

TBS To Be Signed. A textual representation of an
agreement.
Verification Page(s) appended to the end of the visible part of

the agreement, summarizing agreement
information, including a timeline.

XML Extensible Markup Language

Agreement Basics

An agreement has a number of artifacts that together form an agreement:

@greement

Agreement Name

Agreement ID

Agreement files Audit log

Attachment-1 Created
Attachment-2 User 1 viewed
Attachment-3 User 1 signed

User 2 viewed

User 2 signed

Figure 1. Agreement content

* Agreement name chosen by Agreement Creator.
* Agreement ID automatically generated by Egreement’s system.
* Files of different formats, such as text or images, that form the contractual part of the agreement.

* Audit log, created by the Egreement system, keeping records of all major events that have taken

place in the process of concluding the agreement.

» Reference documentation on how Egreement manages agreement creation, signing and conclusion.
This very document is the introduction and first part of the reference documentation.

Version Properties

The following properties apply for the current version of the agreement implementation:

» Agreement File hash algorithm: SHA-256
» Agreement File hash encoding: Hex string
 Reference documents:

o Overview

o Container Format

o Signing

o Validation

Workflow

The Egreement workflow contains a number of stages.

Create agreement - Start
Add agreement files - Upload attachments
Add contracting parties - Add people who are to sign the agreement

Signature creation - All contracting parties sign the agreement

S

Download - Agreement can be downloaded (optional)

Agreement Creation

When an agreement is to be created, the user chooses a name for the agreement and an ID is
automatically generated.

Agreement Files

An agreement file is a part of the agreement. The file can be of any format. If the file format can be
presented by the Egreement software, a visual representation will be shown to the contracting parties.

Contracting Parties

After the agreement has been set up, all contracting parties who should sign the agreement are added.

Signature Creation

The user should always sign the complete agreement including all attached files. Metadata which will
serve as proof of user consent to the agreement will be automatically added by the system, making the
agreement tamper proof and self-contained. Each signee can choose from a set of signature methods.
The actual signature creation is handled differently depending on signing method.

In the signature workflow, a number of signees can individually sign the same agreement. The
aggregated signature result will be added to the agreement as proof of the agreement’s validity. Signing
is described in detail in Signing.

After the last signee has signed, the agreement will be concluded and therefore the process and
agreement files will be closed.

Download

It is possible to download an agreement from the system to store it offline. The downloaded agreement
is tamper proof, as all parts of the agreement, including main file, attachments and all other artifacts,
are tied to every individual signee. Since this downloaded agreement is more than just a document, it
is referred to as a Container.

Egreement currently supports PDF as container-format which is described more in detail in Container
Format.

Logging
All actions associated with the agreement are stored in the audit log.
Dispute

In case of dispute about a signed agreement where the different signees disagree, the Validation
document describes the process how to verify the agreement’s validty.

Reference Documentation

Document name Description

Overview Gives an overview of the Egreement agreement
function and links to the other documents.

Document name

Container Format

Signing

Validation

BankidValidation

SEID-Prosjektet

Cryptographic Message Syntax

Description

Describes the details of how agreement
information is stored within the container PDF.

Describes how Egreement handles the signature
process.

Describes how to validate a container. Makes
references to other documents for validation
details.

Signature Profile for BankID, v2.3

Leveranse oppgave 3 - SEID-SDO - Dataobjekt for
langtidslagring og utveksling av elektroniske
signaturer, v1.01

https://www.ietf.org/rfc/rfc2630

https://www.ietf.org/rfc/rfc2630

		Overview

		Table of Contents

		Purpose

		Overview

		Glossary

		Agreement Basics

		Version Properties

		Workflow

		Agreement Creation

		Agreement Files

		Contracting Parties

		Signature Creation

		Download

		Logging

		Dispute

		Reference Documentation

ContainerFormat

Egreement AB

Version 3.0.106, 2020-11-10

Table of Contents

PULPOS . . o e 1
L0 A 7723 74 (PP 1
GeneriC CONtaINer STIUCTUTEttt ittt et e ettt e e ettt e e e e et ie et iiee e 1
|20 D) S0 0 V0 1= P 1
HOW t0 Validatettt et e et e e et e 3
L0100 0¥ 0 1= W o) 41 1= 11 S PP 3
Agreement File o e 3
Agreement Files Possible to Visualize oot i 3
Agreement Files Non-Possible to Visualize i e 3
HOW to Validatet e et e e e 3
AUAIt L0 . oottt e e e 3
COMIMON STFUCTUTLES . . ottt ettt et e et e e et e e e e e e e et et 4
USEIINT 0. . .ottt 4
AgreementFileInfot e 5

HOW to Validatet e et e e e 5
AZreement Createdttt ittt et ettt e e e e e e 5
HOW to Validateot et e et e 6
Agreement VIEWEAttt e e e e e 7
HOW to Validateot et et 8
Agreement SIGNEdttt e e 8
HOW to Validateot et et e e 8
Agreement ReJECtedt 9
HOW to Validateot et e 10
Agreement EXpireOn Changed.oou ittt e et e 10
HOW to Validateo et e e e 10
MESSAZE eIt . .ttt e 10
HOW to Validateo e et e e 11

0] 0 11
Reference DOCUMENTAtIONttt e et ettt e e e e e i 13
Y22 1 LoF: U0 (o) ¢ PP 13
Basic INfOrmationttt e e 13
Agreement FIleso e 14

B3) {8 LT PP 14
AUAIt LOZ EXITACT. « .\ttt ettt ettt e e e e e e e et e ettt e e e e e 14
G G L0, . . ettt ettt et e e e e e e e e e 14

Agreement VErsiON @ 1.1t e e 14

Agreement Version :
Agreement Version :
Agreement Version :
Agreement Version :
Agreement Version :
Agreement Version :
Agreement Version :
Agreement Version :
Agreement Version :
Agreement Version :

Agreement Version :

Reference DOCUIM eI AtION v vttt et e et e et e e e et e e e e e e e

Purpose

This document is targeted for contracting parties and arbitrators that create, sign and/or evaluate
agreements concluded through the Egreement application. The document describes the content,
structure and semantics of the agreement container, required to understand in order to evaluate
agreements or settle possible disputes.

Overview

An agreement in the Egreement sense is not just a single document. Instead, an agreement is a
collection of different information artifacts concerning an agreement made between one or more
contracting parties. Artifacts can be the text on which agreement parties are to agree, individual
parties’ acceptance statements, or records of the events associated with the conclusion of the
agreement. In order to store this information in a secure and self-contained manner, a Container is
needed. The container is simply a file storing all the information needed in a structured and well-
defined way.

Generic Container Structure

The container includes the following artifact types:

* Agreement File - One or more documents, or other types of files (such as images), either uploaded
by the agreement creator or provided by the Egreement application, that togehter constitute the
agreement.

* Audit Log - A log, created by the Egreement system, with recordings of all major events that have
taken place in the process of concluding the agreement.

* Reference Documentation - Documentation how Egreement manages agreement creation, signing
and closing.

* Verification - An agreement summary, including a listing of included agreement files, signees and
an extract of the audit log.

PDF Container

The container format used by Egreement is PDF. All of the listed artifact types are stored as so called
attachments in the PDF container. The reason for adding agreement artifacts as attachments is that
this makes it possible to provide traceability throughout the complete signing process. In order for a
reader to easily be able to view the contents of the agreement, a selection of the attachments is
"mirrored" to the main (visible) part of the PDF.

@greement PDF Container

— il “

Agreement File 1
Agreement File 2
Visualization of Agreement File N
Agreement File 1-N
Reference Documentation 1
Reference Documentation 2
Reference Documentation N

Audit Log I

Verification I Verification I

Figure 1. Container Overview

Not all PDF viewers are able to list and/or present PDF attachments. Therefore, it is
recommended to use the official Adobe Acrobat Reader to view Egreement PDF
containers.

Each attachment is given a numeric prefix to its name in order to sort the files correctly in the list. Also
note that the description field holds the artifact type of the attachment.

@ Attachments X
@ B &
Name ~ Description Modified
5 01-CarContract.pdf Agreement File-456-5654-10 29/04/16 14:25:26
i‘ 02-Carlmage.jpg Agreement File-456-5654-12 29/04/16 14:25:27
) 03-CarSound.m4a Agreement File-456-5654-13 28/04/16 14:25:27
: 04-auditlog.json Audit Log 29/04/16 14:25:27
= 05-Overview.pdf Reference Documentation 29/04/16 14:25:27
= 06-ContainerFormat.pdf Reference Documentation 29/04/16 14:25:27
5 07-Signing.pdf Reference Documentation 29/04/16 14:25:27
= 08-Validation.pdf Reference Documentation 29/04/16 14:25:27
= 09-verification.pdf Verification 29/04/16 14:25:27

Figure 2. PDF Attachments

How to Validate

The container is a valid PDF agreement if it holds the artifacts defined above.

Container Content

Agreement File

Artifact type: Agreement file

Agreement files are the parts of the agreement which the agreement creator uploads or selects to be
included. These could be documents, forms, images or virtually any type of file. Furthermore,
agreement files can be divided into two categories, agreement files possible to visualize and non-
possible to visualize.

Agreement Files Possible to Visualize

Files possible to visualize, are added as attachments to the container just as all other artifact types, but
they are also mirrored to the visible part of the agreement PDF. This allows the user to quickly view
the content of the main parts of the agreement. Files that typically are possible to visualize, are PDFs,
image-type files and text files.

Agreement Files Non-Possible to Visualize

Agreement files non-possible to visualize, are not mirrored to the visual part of the agreement PDF,
though it is represented with name, size and hash of the file. These file types are typically technically
hard or impossible to create a visual representation of, e.g. a sound file or a video file.

How to Validate

To understand what has been agreed and to establish if there is a dispute or if the disagreement
between the contracting parties is actually covered by the agreement, please read and understand the
actual content of the agreement.

Audit Log

Artifact type: Audit log

The audit log attachment is a well-defined, JSON formatted, document presenting all the important
events that have occurred from when the agreement was created until the agreement was closed.
Refer to the "Workflow" chapter in Overview for more details.

The following audit log entry types are defined:

* Agreement Created

* Agreement Viewed

* Agreement Signed

* Agreement Rejected

* Agreement ExpireOn Changed

* Message Sent

The different log entry types are described in detail below.

Common Structures
All log entry types share common information that is included in every log entry logged.

Table 1. Common Attributes

Parameter name Parameter value example Description

time 2016-03-21T10:03:28.010+0000 Time when the entry was logged
as yyyy-MM-dd'T'HH:mm:ss.SSSZ.

id 540431 (or 1e8f69a4-07c1-11e8- An ID of this particular event

ba89-0ed5f89f718b) (can either be a numeric long

value or Time based UUID).

event(lass agreement_created Name of the type, as listed
below.

eventld 10 Each type includes a set of IDs.

See respective log entry type
description for details.

userInfo See UserInfo Information about a user.

UserInfo

The UserInfo structure holds information about the user triggering an event, users being contracting
parties of an agreement as well as other users. Note that only a subset of the parameters is included,
depending on the situation where the UserInfo structure is used.

Table 2. UserInfo

Parameter name Parameter value example Description

ipAddress 212.94.55.131 The IP address of the user.

email Jjohn@example.org The user’s email address.

personNr 19550505-1234 The user’s Swedish personal
identity number.

https://en.wikipedia.org/wiki/Universally_unique_identifier

Parameter name Parameter value example Description

personName John Smith The first and last name of the
user.

personGivenName John The first name of the user.

personSurname Smith The last name of the user.

orghr 551234-1234 The organization number of the

organization on behalf of which
the user is operating.

orghame Acme AB The organization name of the
organization on behalf of which
the user is operating.

AgreementFileInfo

The AgreementFilelnfo structure holds information about an agreement file, e.g. a PDF uploaded by the
user. See Agreement File.

Table 3. AgreementFileInfo

Parameter name Parameter value example Description
fileld 6572354654 (or 75928ba0-2369- The system generated ID of the
11e8-b467-0ed5f89f718b) agreement file (can either be a

numeric long value or Time
based UUID).

fileName MyEmployeeAgreement.pdf The user defined name of the
agreement file.

fileMimetype application/pdf The agreement file mime type.

fileSize 42253 The size, in bytes, of the

agreement file.

fileHash 3d7c514b...66b786a4 The hash of the agreement file,
encoded as a hex string.

How to Validate

See Validation how to validate the entire audit log.

Agreement Created

This event is logged when the agreement is created. This is always the first log entry for each
agreement, i.e. no events can take place before this event has occurred.

* EventClass: agreement_created

https://en.wikipedia.org/wiki/Universally_unique_identifier

https://en.wikipedia.org/wiki/Universally_unique_identifier

* Eventld:

> 10: When a private user creates an agreement using the web application.

> 11: When a company user creates an agreement using the web application.

o 12: Agreement created using the APIL

Table 4. Agreement Created Specific Information

Parameter name

agreementName

agreementId

agreementVersion

agreementlocale

signees

agreementFiles

How to Validate

Parameter value example

MyEmployeeAgreement

12345678901234 (or 75928bao0-
2369-11e8-b467-0ed5f89f718b)

1.11

Sv_SE

List of UserInfo

List of AgreementFileInfo

Description

User specified name of the
agreement.

System generated ID of the
agreement(can either be a
numeric long value or Time
based UUID).

Version of the agreement
container format.

Locale of the agreement
container.

A listing of the signees defined
as parties in the agreement.

A listing of the agreement files
included in the agreement.

Validating this audit entry requires a number of steps all documented below.

EventTypeld Validation

Check that the UserInfo field is populated correctly according to EventType. See UserInfo for details.

Table 5. EventType effect on UserInfo

Type
10

11
12

Agreement Metadata

All metadata parameters must be validated according to table below.

How to validate UserInfo

orgNr and orgName must not be set

personNr, orgNr and orgName must be set

orgNr and orgName must be set

Table 6. Agreement Created Metadata Verification

https://en.wikipedia.org/wiki/Universally_unique_identifier

https://en.wikipedia.org/wiki/Universally_unique_identifier

Parameter name How to validate

agreementName Must be present

agreementId Must be present

agreementVersion Must be less than or equal to 1.12
agreementlocale If present, Must be a valid locale and container

verification page must be in this language
signees See Signees Validation

agreementFiles See Agreement File Validation

Agreement File Validation

Validate that all Agreement File are the correct ones, that they are included, and that there are no
additional files than the ones listed in the audit log.

Audit Log

Check all agreement files in this audit entry and verify that they all exist in the container. Do this by
identifying the attachment by the ID and name stated in the audit entry.

Attachments

Check all agreement files in the PDF container by searching after the Artifact type: Agreement file and
make sure that they are all listed in the create agreement audit entry.

Check Hashsums

For each agreement file, compute the hash and check that the hash in the audit entry is correct.

Signees Validation

Make sure that each signee has an Agreement Signed audit entry. Also check that the number of signees
is equal to the number of Agreement Signed entries.

Agreement Viewed
This event is logged every time an agreement is viewed or downloaded.

* EventClass: agreement_viewed
* Eventld:
o 20: When a user views an agreement using the web application.
> 21: When a user views an agreement using a mail link.
o 22: When a user views an agreement by downloading it using the web application.

> 23: When a user views an agreement using a mail link that is protected using two-factor
authentication.

Agreement Viewed Specific Information

None

How to Validate

Check that time of entry is after Agreement Created.

Agreement Signed

This event is logged every time a user signs an agreement.

* EventClass: agreement_signed

* Eventld:

> 30: When a user signs the agreement, not being the last signee.

> 31: When a user signs the agreement as the last signee.

> 32: When a user tries to sign the agreement but signing fails.

Table 7. Agreement Signed Specific Information

Parameter name

signeelnfo

signMetadata

Table 8. SignMetadata
Parameter name

signatureMethod

signature

ocspResponse

How to Validate

Parameter value example
See UserInfo

See SignMetadata

Parameter value example

bankid

PD94bWwgdm...duYXR1cmU+

MIIEXgoBAK...jks3yrAUVE

Check that time of entry is after Agreement Created.

Description
Information about the signee.

Signing metadata produced in
the signing process.

Description

The ID of the signing method
used.

The signature encoded as
Base64. The underlying format
depends on the signature
method used.

The OCSP response message
encoded as Base64. This
parameter is only included for
some signing methods.

EventType Validation
Table 9. EventType effect on validation

Type
30

31

TBS Validation

How to act
Verify as described below.

Verify as describe below, and once done, check
that there are no more Agreement Signed entries
in the audit log.

In case of an advanced signature method, re-create TBS according to Signing. The TBS algorithm
requires a number of inputs that should be recovered from Agreement Created.

For non advanced signature methods, TBS validation is not applicable.

Signature Validation

Fetch the signature method pointed out by SigningMethod and verify the signature according to the

corresponding chapter in Signing

Signee Validation

The output from the Signature Validation should be validated according to table below.

Output type

Signature time

User attributes

TBS or hash of TBS

Hash algorithm

Agreement Rejected

How to validate

If a signature time has been registered, check that
this signature time corresponds to the time of the
Agreement Signed.

Check that the user attributes returned from the
signature method matches the attributes of the
SigneeInfo.

If TBS validation applies, check that TBS or hash
of TBS matches the re-created TBS from TBS
Validation

If TBS validation applies, and the TBS is returned
hashed, return name of hash algorithm.

This event is logged when the agreement is rejected. If this event occurs, the agreement is invalid.

* EventClass: agreement_rejected

¢ Eventld:

o 40: Agreement rejected by user.
o 41: Agreement auto-rejected due to validity timeout.

o 42: Agreement withdrawn by agreement creator.

Agreement Rejected Specific Information

None

How to Validate

If one of these audit entries are found, the agreement is not a valid agreement.

Agreement ExpireOn Changed
This event is logged when the agreement expiry date is changed.

* EventClass: agreement_expire_on_changed
* Eventld:

o 80: Agreement expiry date changed by user.

Table 10. Agreement ExpireOn Changed Specific Information

Parameter name Parameter value example

agreementPreviousExpireOn 2016-03-21T10:03:28.010+0000

agreementExpireOn 2016-03-31T10:03:28.010+0000
How to Validate

Check that time of entry is after Agreement Created.

Message Sent

Description

Time when agreement was
scheduled to expire as yyyy-Mi-
dd'T'HH:mm:ss.SSSZ.

Time when agreement is
scheduled to expire as yyyy-MM-
dd'T'HH:mm: ss.SSSZ.

A message is logged each time the system sends a mail to parties involved in the agreement.

* EventClass: message_sent

* Eventld:
> 50: Message sent due to event IDs: 10-12
> 51: Message sent due to event ID: 30.
o 52: Message sent due to event ID: 31.

> 53: Message sent due to event ID: 40.

10

o 54: Message sent due to event ID: 41.

o 55: Message sent when agreement is shared.

> 56: Message sent when agreement sharing is cancelled.

o 57: Message sent when agreement validity is about to expire.
o 58: Message sent as a reminder of agreement creation.

> 60: Message sent due to event ID: 20-23.

Table 11. Message Sent Specific Information
Parameter name Parameter value example Description

sentTo List of UserInfo A listing of the users to whom
the message is sent.

How to Validate

Check that time of entry is after Agreement Created.

Format

The audit log is included in the container as a JSON-formatted file.

Audit log example
[{
"agreementId" : "160400034502",
"agreementName" : "Package patent",
"agreementVersion" : "1.11",
"agreementlLocale": "sv_SE",
"agreementFiles" : [{

"fileSize" : "722085",
"fileId" : "4081",
"fileHash" : "01e70b3f3d48df504119a912e171df2f253332a8bf73d052c004e27bf64671a0",
"fileMimetype" : "application/pdf",
"fileName" : "patent.pdf"
i
"fileSize" : "180269",
"fileId" : "4082",
"fileHash" : "96e0a461e285986ae6e3a2b581568c89d1dae77ae580fea1859faab2e594ec4db”,
“fileMimetype" : "image/png",
"fileName" : "fig1.png"
P
"signees" : [{
"personNr" : "191111112222",
"personName" : "Alice A"

hoA

11

"personNr" : "193333334444",
"personName" : "Bob B"
P
"id" : 778333,
“time" : "2016-04-26T16:39:30.000+0000",
"user" : {
"personNr" : "193333334444",
"personName" : "Bob B",
"ipAddress" : "1.2.3.4"
H
"eventClass" : "agreement_created",
"eventId" : 10
boA
"id" : 778334,
"time" : "2016-04-26T16:39:31.000+0000",
"eventId" : 50,

"event(lass" : "message_sent",

"user" : {
"personNr" : "193333334444",
"personName" : "Bob B",
"ipAddress" : "1.2.3.4"

H

"sentTo" : [{
"email" : "alice.a@eavtal.se",
"personName" : "Alice A"

}]

}oAo

"signingMethod" : "bankid",

"signeelnfo" : {
"personSurname" : "B",
"personNr" : "193333334444",
"personGivenName" : "Bob",
"personName" : "Bob B"

}

igningMetadata" : {
"ocspResponse” : "MII...z5Q==",
"startDate" : "2016-04-26716:39:32.000+0000",
"signatureMethod" : "bankid",
"signature" : "PD9...cmU+"
I
"id" : 778335,
"time" : "2016-04-26T16:39:43.000+0000",
"user" : {
"personNr" : "193333334444",
"personName" : "Bob B",
"ipAddress" : "1.2.3.4"
i

"event(Class" : "agreement_signed",

"eventId" : 30
}]

Reference Documentation

Artifact type: Reference documentation

Included in the container is also the reference documentation which documents the container format,
overview and details about signing and validation, Etc.

Table 12. Reference Documentation
Document name Description

Overview Gives an overview of the Egreement agreement
function and links to the other documents.

Container Format Describes the details of how agreement
information is stored within the container PDF.

Signing Describes how Egreement handles the signature
process.

Validation Describes how to validate a container. Makes
references to other documents for validation
details.

BankidValidation Signature Profile for BankID, v2.3

SEID-Prosjektet Leveranse oppgave 3 - SEID-SDO - Dataobjekt for

langtidslagring og utveksling av elektroniske
signaturer, v1.01

Cryptographic Message Syntax https://www.ietf.org/rfc/rfc2630

Verification

Artifact type: Verification

The verification page is included as an attachment in the container, and is also mirrored to the visible
part of the container PDF. The purpose of the verification is to provide the reader with a summary of
the content of the agreement, in combination with important events that have occurred during the
agreement creation and signing process. An overview of the contents of the verification is given below.

Basic Information

Includes the most basic, and always present, information of the agreement. See Agreement Created for
more details.

13

https://www.ietf.org/rfc/rfc2630

* Agreement ID
* Agreement name

* Agreement version

Creation date

Agreement Files

Lists the different files that the agreement includes. This is primarily the documents uploaded by the
user, which include agreement text and other data. See AgreementFileInfo for more details.

Each agreement file is listed with the following properties:

» Agreement file ID

* Agreement file name

* Agreement file mime type
* Agreement file size

* Agreement file hash

Signees

Lists the signees that have signed the document. See UserInfo for more details. Each signee is listed
with the following properties:

* Signee person number ID
» Signee name
 Signee sign date

Audit Log Extract

The verification ends with a summarizing extract from the audit log. It includes the most important
events and information from the audit log, whereas audit information that is of secondary importance
is filtered out.

Change Log

Agreement Version : 1.1

* Date of Change : 2017-02-28
* Logs

o Representation of agreement parts which are not possible to visualize are to include last

14

modified date along with the existing information (Name, Size, Hash).

o Layout is also changed to display the additional information vertically.

- Agreement File section of Verification page to include last modified date & time.

o ToBeSigned (TBS) text is separated into two types(visible & hidden).

Agreement Version : 1.2

» Date of Change : 2017-03-15
* Logs
o File Title is included in non visible agreement parts.

- Removed file Hash information from Attest Page and included file title

Agreement Version : 1.3

» Date of Change : 2017-06-21

* Logs

o New Signature Methods EMail signature & Email signature with OneTimePassword introduced

Agreement Version : 1.4

* Date of Change : 2018-02-01
* Logs
o Audit Events are allowed to have id as Long (number) or UUID

o New Signature Method Click signature introduced

Agreement Version : 1.5

* Date of Change : 2018-05-31
* Logs

> Norwegian BankID is introduced

Agreement Version : 1.6

* Date of Change : 2018-07-31
* Logs

o More information about signature added on attest page

15

Agreement Version : 1.7

» Date of Change : 2019-01-16
* Logs

o Draw signature image added on attest page

Agreement Version : 1.8

* Date of Change : 2019-02-01
* Logs

o Message Sent for viewed event added in auditlog.json

Agreement Version : 1.9

* Date of Change : 2019-04-04
* Logs

o Agreement locale added for agreement created event in auditlog.json

Agreement Version : 1.10

» Date of Change : 2019-05-16
* Logs

- Enable rendering of txt files on visual part of the PDF.

Agreement Version : 1.11

* Date of Change : 2019-05-14
* Logs

o Agreement expire on changed event added in auditlog.json

Agreement Version : 1.12

» Date of Change : 2020-04-20
* Logs

o Localized signing method display text on attest page & in auditlog.json

16

Reference Documentation

Document name

Overview

Container Format

Signing

Validation

BankidValidation

SEID-Prosjektet

Cryptographic Message Syntax

Description

Gives an overview of the Egreement agreement
function and links to the other documents.

Describes the details of how agreement
information is stored within the container PDF.

Describes how Egreement handles the signature
process.

Describes how to validate a container. Makes
references to other documents for validation
details.

Signature Profile for BankID, v2.3

Leveranse oppgave 3 - SEID-SDO - Dataobjekt for
langtidslagring og utveksling av elektroniske
signaturer, v1.01

https://www.ietf.org/rfc/rfc2630

17

https://www.ietf.org/rfc/rfc2630

		ContainerFormat

		Table of Contents

		Purpose

		Overview

		Generic Container Structure

		PDF Container

		How to Validate

		Container Content

		Agreement File

		Agreement Files Possible to Visualize

		Agreement Files Non-Possible to Visualize

		How to Validate

		Audit Log

		Common Structures

		UserInfo

		AgreementFileInfo

		How to Validate

		Agreement Created

		How to Validate

		Agreement Viewed

		How to Validate

		Agreement Signed

		How to Validate

		Agreement Rejected

		How to Validate

		Agreement ExpireOn Changed

		How to Validate

		Message Sent

		How to Validate

		Format

		Reference Documentation

		Verification

		Basic Information

		Agreement Files

		Signees

		Audit Log Extract

		Change Log

		Agreement Version : 1.1

		Agreement Version : 1.2

		Agreement Version : 1.3

		Agreement Version : 1.4

		Agreement Version : 1.5

		Agreement Version : 1.6

		Agreement Version : 1.7

		Agreement Version : 1.8

		Agreement Version : 1.9

		Agreement Version : 1.10

		Agreement Version : 1.11

		Agreement Version : 1.12

		Reference Documentation

Signing
Egreement AB

Version 3.0.106, 2020-11-10

Table of Contents

PULPOS . . o e

(k7<) 72 175

EleCtrOniC SIgNatures.ottt ettt ettt e e et e e e e e e e e e
L0374 1103 = 0] 1 200 PP
Cryptographic Hash FUNCHONSottt e et et
ASymmEetriC ENCIYPUION . . . oottt ettt e e e e e e e
DiIgital SIgMaAtUTES . . . oottt ettt e et e e e e

B3} 14 U0 PP
Create teXt FePreSeNTAtIONot vttt ettt e ettt ettt ettt
VSTl TS . . e
FOrat . e e e e e
HIdden TBS ..o e e
FOrmat . e e e e e e

Create Digital SIgnaturettt ettt
Signature Methodst e e e
Swedish BanKID e
SIgNAtUTre fOTMALttt e
AUt IO . . ottt
HOW tO ValIdAteo e
Norweglan BankIDt e e
SIgNAtUTe fOTIMALttt e e
AUt IO, . et e

HOW t0 Valldate ..ottt et e et e e e e e e e e e e e e e e e e e e

SIgNAtUTre fOTIMALttt e e e
AUt IO, . et e
HOW tO ValIdAteo e e
DraW SIgNAtUTE. .« ..ttt ettt ettt et e e et e e e e e e e e e e
SIgNAtUTe fOTIMALttt e e e e
AUt IO, . et e
HOW to ValIdateo e
AP SIBNATUTE ...ttt ettt et e e et e e e e e e e e e e
AUt IO, . et e

HOW 10 ValIAAte . .ottt et e 9

SMS S gNATUTE . . oottt ettt et ettt ettt et et e e e e e e e e e 9
AUt L0 oot e 10
HOW t0 ValIdateottt e et e e et e e e e 10

Email Signature with OneTimePassWworduuviiiuin ettt i, 10
AUt L0 oot e e e 10
HOW t0 ValIdateottt e et e e et e e e e 11

CLICK SIgNAtUTE . . oottt ettt ettt e e e ettt e e et e e e et it 11
AUt L0 oottt e e e 11
HOW t0 ValIdateottt e et e e et e e e e 11

Reference doCUIMENtAtION . ..ottt ettt e et e e e e e e et e e e e e 12

Purpose

The purpose of this document is to provide deep knowledge of the signature process making it possible
to verify the signatures of agreements signed using the Egreement service.

Overview

This document describes how Egreement handles the signature process, including all steps from how
to produce signature texts to make all agreement files tamper proof, to how each Electronic ID (EID)
provider implements its signatures.

System

For the agreement signatures to be trustworthy, it is important that a stable and high-quality system
protects the signing process.

All parts providing evidence for the signature, such as hardware, operating system and software, have
to be trusted.

Hardware

Egreement’s signature software runs on a virtualized hardware platform. It is hosted in a data center
with high availability requirements, used by large banks and e-commerce companies.

Software

For a signature to be trusted, it is important that the timestamp can be reliable. Timestamps are used to
show when certain events occur and are an important evidence when validating an agreement.

The platform synchronizes its time over the standardized Network Time Protocol (NTP).

Electronic Signatures

An electronic signature is any electronic means that indicates either that a person adopts the contents
of an electronic message, or more broadly that the person who claims to have written a message is the
one who wrote it. Examples of electronic signatures are:

* Draw Signature - A handwritten signature drawn on a digital canvas.

» API Signature - A signature created by consuming the web service exposed by Egreement AB.

» SMS Signature - A signature created by responding to an SMS with context specific content.

* Email Signature with OneTimePassword - A signature created by One Time Password(OTP) based

email service.
* Click Signature - A signature created by personalized link.

» Cryptographic Signature - A signature created using a cryptographic key.
Some types of signatures are classified as advanced electronic signatures. Such an electronic signature:

* is uniquely tied to the signatory,

* makes it possible to identify the signatory,

* is created using material only controlled by the signatory and

* is tied to the signed data in such way that any changes can be detected.

Electronic signatures based on PKI, such as the Swedish BankID, Norwegian BankID and Telia EID
solutions, provide advanced electronic signatures.

Cryptography

Cryptography is a central part of many signature solutions, for example to provide tamper-proof
agreement files.

The following chapters introduce some concepts needed to understand cryptography based signatures.

Cryptographic Hash Functions

A cryptographic hash function is any function that can be used to map data of arbitrary size to data of
fixed size where it is practically impossible to find two pieces of input that produces the same hash
value. It is a one way transformation that produces the same result every time. The result is called a
hash and since it is a one way function, it is not possible to re-create the input behind a hash.

Examples on hash functions are:

* SHA.2
 RIPEMD
* Whirlpool

Asymmetric Encryption

In cryptography, two types of encryptions are most commonly used, symmetric and asymmetric
encryption. The difference between them is that the symmetric encryption uses one single key for both
encryption and decryption, while asymmetric uses one key for encryption and another for decryption.
The fact that there are two keys can also be used for creating signatures and serves as a base for many
types of EID. The EID solutions usually use the asymmetric encryption in a Public Key Infrastructure
(PKD).

Asymmetric encryption make use of keypairs that if a text is encrypted using one of the keys, the only
key that can decrypt the crypto text is the other key belonging to the pair. One key is private and
should not be shared with anyone, the other is public and is used to verify signatures created with the
private key.

Examples on asymmetric keys are:

* RSA
* DSA

Digital Signatures

When signing using asymmetric keys, the signature result is called a raw signature and is just a binary
blob of a specific size, without any information at all. In order for the signature to be used in a
distributed environment, there is a need to add information on who signed the blob, what was signed
and so on.

The combination of metadata and the raw signature is called a digital signature. Some information is
optional:

 Signature time

X.509 Signature Certificate

X.509 CA Certificates (who issued the X.509 Signature Certificate)
 Signature text (TBS)

* Hash algorithms used

« Signature algorithm used

* The raw signature
Examples on digital signature formats are:

* CadES/CMS/PKCS#7
* XAdES

Signing
To sign an agreement a number of actions need to be executed:

* Create text representation of agreement

* Create digital signature

Create text representation

For advanced electronic signatures, where the agreement contents is logically tied to the created
signature, the text needs to be prepared in order to suit the signing method used. The textual
representation of an agreement is also called To Be Signed, or TBS for short. The TBS is the actual text
that is to be digitally signed. For the whole agreement to be tamper proof, the agreement metadata
with all agreement files needs to be signed. Digital signature clients have limitations on the size of TBS.
It is not possible to sign the actual agreements, since there is a risk that the agreement files are too
large. Therefore cryptographic hash functions are used to reduce the size of the agreement files and
create a representation of it.

For non advanced signatures, where the agreement contents is not directly tied to the signature, the
above preparation is normally not needed.

Digital signature clients allow us to send two different types of TBS. They are:
* Visible TBS
* Hidden TBS

Visible TBS

TBS text that is exposed to the signatories by the digital signature clients. General information about
the Agreement is supplied to digital signature clients as a visible TBS.

Format

I sign: "Employment ACME Inc"
Egreement ID: 2394857302
Date: 26/04/2016

Hidden TBS

TBS text that is hidden from the signatories by the digital signature clients. Agreement content is
reduced to fewer characters using cryptographic hash functions is supplied to digital signature clients
as a hidden TBS.

Format

Content:

"Contract"
1103 b497 984e 433c 38d4 fdef 775 33ad Ocef 8c@7 9995 5b37 7c8e eddf 66f7 de73

"Codes of conduct"
2c¢f9 688d c483 2085 1112 6120 9001 58b2 ab2e 62b1 afd5 acch ebbb 5134 c7a4 9012

Create Digital Signature

For advanced electronic signatures, the cryptographic signature is created by applying the private key
from an asymmetric key pair on a dataset that previously has been hashed. In this context, the dataset
is the TBS. Different EID providers handles digital signatures in different ways, Signature Methods
describes all methods supported.

For non advanced signatures, signature creation will vary depending on the method.

Signature Methods

Currently, the following signing methods are supported:

» Swedish BankID (advanced electronic signature)

* Norwegian BankID (advanced electronic signature)
* Telia EID (advanced electronic signature)

* Draw Signature

* API Signature

* SMS Signature

* Email Signature with OneTimePassword

* Click Signature

These are described in detail below.

Swedish BankID

Swedish BankID is the largest EID provider in Sweden run by Finansiell ID-Teknik BID AB which is
owned by a number of large swedish banks.

It is a PKI based solution with support for filebased tokens as well as smart cards, supported on a
number of platforms for desktop and mobile.

Signature format

The BanKkID client produces an XML Digital Signature as specified in BankID Signature profile.

Audit log

Each signature transaction provides information used in user interface and audit logging:

* personNr - In the form of a Swedish personal identity number.
* personSurname - Surname in capital letters.

* personGivenName - Given name in capital letters.

* startDate - Date when signing was started.

* signatureMethod - Will be bankid or bankid-otherunit.

* transactionld - Transaction ID from backend system.

* signature - Signature, base64 encoded.

How to validate
Validate the signature according to BankID Signature profile.
Output from validation to provide to Signee Validation in Container Format is:

» User attributes of the first certificate of the XML element KeyInfo with ID bidKeyInfo in the
signature.

* Hashed TBS.
* TBS Hash algorithm.

Norwegian BankID

Norwegian BankID is the largest EID provider in Norway run by BankID Norway AS.

It is a PKI based solution that uses a one time password in combination with a personal password,
supported on a number of platforms for desktop and mobile.

Signature format

The BankID client produces an XML Digital Signature as specified in SEID-Prosjektet.

Audit log

Each signature transaction provides information used in user interface and audit logging:

* personNr - In the form of a Norwegian personal identity number, when available.

name - Surname and Given name with initial capital letter.

startDate - Date when signing was started.

signatureMethod - Will be bankid-no or bankid-no-mobiTle.

transactionld - Transaction ID from backend system.

signature - Evidence, base64 encoded.

How to validate

The signature can be verified on https://www.bankid.no/en/private/solve-my-bankid-problem/read-
signed-documents/

» Base64 encoded TBS.
* TBS RS256 algorithm

Telia

Telia is the largest telephone operator in Sweden. One of the Telia offerings is the Telias electronic ID
service.

Telia’s solution is PKI based, issuing both filebased and smart card EIDs and targeting both private

users and organizations. As an example, the EIDs provided on the Swedish Tax Agency ID cards are
issued by Telia.

Signature format

The Telia client produces PKCS#7/CMS signatures as specified in Cryptographic Message Syntax. The
top structure type is a PKCS #7 signedData (1.2.840.113549.1.7.2) and always contains exactly one (1)

SignerInfo entry in signerInfos. The following signed attributes are included in the Signerinfo
signedAttrs:

Table 1. Signed Attributes

Attribute Name Attribute Value
1.2.840.113549.1.9.3 (PKCS #9 contentType) 1.2.840.113549.1.7.1 (PKCS #7 data)
1.2.840.113549.1.9.5 (PKCS #9 signingTime) Time of signing

1.2.840.113549.1.9.4 (PKCS #9 messageDigest) Hash of the content

Audit log

Each signature provides data for the Agreement Signed specified in Container Format. The data
provided is:

» personNr - In the form of a swedish personal number.

https://www.bankid.no/en/private/solve-my-bankid-problem/read-signed-documents/

https://www.bankid.no/en/private/solve-my-bankid-problem/read-signed-documents/

* personSurname - Surname

* personGivenName - Given name

* startDate - Date when signing was started.

* signatureMethod - Will be telia.

* transactionld - Transaction ID from backend system.

* signature - Signature, base64 encoded.

How to validate

Validate the signature according to 5.6 Message Signature Verification Process in Cryptographic
Message Syntax.

Output from validation to provide to Signee Validation in Container Format is:
» User Attributes of the signer certificate in the element SignedData certificates in the PKCS #7
signature.

* Hashed TBS
* Hash algorithm

Draw Signature

The draw signature signing method is an electronic counterpart to traditional handwritten signatures.
Using draw signature, the end user draws a signature on a web canvas. The signing method is not
classified as an advanced electronic signature in that it does not tie the user to the contents signed and
does not identify this signatory. Yet, the method can be suitable in use cases where advanced electronic
signatures are not required.

Signature format

The signature is represented as a SVG/PNG image.

Audit log

Each signature provides data for the Agreement Signed specified in Container Format. The data
provided is:

* personNr - In the form of a swedish personal number.

* personSurname - Surname

* personGivenName - Givenname

* signatureMethod - Will be draw-signature.

* signature - The SVG or PNG image, base64 encoded.

* signatureContentType - The content type of signature eg. image/svg, image/png.

How to validate

Due to the nature of this kind of signature, the signature in itself cannot be machine validated in the
same way as an advanced signature. Also, as the case of traditional handwritten signatures where
there are no formal requirements placed, ocular comparison does not add to trustworthiness.

API Signature

The API Signature is an electronic signature which is done by consuming the web service exposed by
Egreement AB. Using API Signature, the end user signs the agreement by making a request to the web
service. Using this method, user can also send the timestamp of actual time when the sign event took
place. This signing method is not classified as an advanced electronic signature in that it does not tie
the user to the contents signed and does not identify this signatory. Yet, this method can be suitable in
use cases where advanced electronic signatures are not required.

Audit log

Each signature provides data for the Agreement Signed specified in Container Format. The data
provided is:

» personNr - In the form of a swedish personal number.

* personSurname - Surname

* personGivenName - Givenname

* signatureMethod - Will be api-signature.

* signedOn - Time at which the agreement was actually signed (stated by user)

How to validate

Due to the nature of this kind of signature, the signature in itself cannot be machine validated in the
same way as an advanced signature.

SMS Signature

SMS Signature is an electronic signature created by responding to an SMS with context specific
content. The content of the SMS is One Time Password (OTP), a 6 digits number sent to the registered
mobile no of the signee. The Signee has to submit the OTP in order to sign the agreement. The OTP
Number is generated by TOTP algorithm by hashing the current time along with the agreement
information. OTP can be regenerated and verified by the same logic provided the given time &
agreement information are same.

Audit log

Each signature provides data for the Agreement Signed specified in Container Format. The data
provided is:

* mobile - Mobile no of the signee.

* timestamp - Date when signing was started.

« agreementName - Name of the agreeement.

* signatureMethod - Will be sms-signature.

OTP - One Time Password.

How to validate

One Time Password (OTP) can be verified using the following algorithm from the attributes
(agreementName, mobile, timestamp).
* HASHLG : Use SHA-256 algorithm to generate hash of the given input.
* hash (array): HASHLG(agreementName + mobile + timestamp)
» random (function): hash[${param1}] & ${param2} << ${param3}
* otp : Follow the below steps to generate OTP from the hash.
o offset = random(hash.length - 1, 15, 0)

o binary = random(offset, 127, 24) | random(offset + 1, 255, 16) | random(offset + 2, 255, 8) |
random(offset + 3, 255, 0)

o otp = binary % 1000000
o If the output is less than 6 digits, add the remaining digits as '0' in prefix.

* Now verify the ${otp} generated against the OTP that you can find in the auditLog.json.

Email Signature with OneTimePassword

Email signature with OneTimePassword is an electronic signature created by One Time Password(OTP)
based email service. The content of the Email is One Time Password (OTP), a 6 digits number sent to
the registered email address of the signee. The Signee has to submit the OTP in order to sign the
agreement. The OTP Number is generated by TOTP algorithm by hashing the current time along with
the agreement information. OTP can be regenerated and verified by the same logic, provided the given
time & agreement information are same.

Audit log

Each signature provides data for the Agreement Signed specified in Container Format. The data
provided is:

10

* email - Email address of the signee.

* timestamp - Date when signing was started.
« agreementName - Name of the agreeement.
* signatureMethod - Will be email-signature.

OTP - One Time Password.

How to validate

One Time Password (OTP) can be verified using the following algorithm from the attributes
(agreementName, email, timestamp).
* HASHLG : Use SHA-256 algorithm to generate hash of the given input.
* hash (array): HASHLG(agreementName + email + timestamp)
» random (function): hash[${param1}] & ${param2} << ${param3}
* otp : Follow the below steps to generate OTP from the hash.
o offset = random(hash.length - 1, 15, 0)

o binary = random(offset, 127, 24) | random(offset + 1, 255, 16) | random(offset + 2, 255, 8) |
random(offset + 3, 255, 0)

o otp = binary % 1000000
o If the output is less than 6 digits, add the remaining digits as '0' in prefix.

* Now verify the ${otp} generated against the OTP that you can find in the auditLog.json.

Click Signature

Click signature is an electronic signature created by using a personalized link. The personalized link
can be shared by email or directly in an integrated application. When the signee visits the link, it will
take him to the agreement review page where he can click the sign button to sign the agreement.

Audit log

Each signature provides data for the Agreement Signed specified in Container Format. The data
provided is:

* email - Email address of the signee.
* timestamp - Date when signing was started.

* signatureMethod - Will be click-signature.

How to validate

Due to the nature of this signature , we can’t validate the authenticity of the signature. Signatories has

11

to keep the link secret.

Reference documentation

Document name

Overview

Container Format

Signing

Validation

BankidValidation

SEID-Prosjektet

Cryptographic Message Syntax

12

Description

Gives an overview of the Egreement agreement
function and links to the other documents.

Describes the details of how agreement
information is stored within the container PDF.

Describes how Egreement handles the signature
process.

Describes how to validate a container. Makes
references to other documents for validation
details.

Signature Profile for BankID, v2.3

Leveranse oppgave 3 - SEID-SDO - Dataobjekt for
langtidslagring og utveksling av elektroniske
signaturer, v1.01

https://www.ietf.org/rfc/rfc2630

https://www.ietf.org/rfc/rfc2630

		Signing

		Table of Contents

		Purpose

		Overview

		System

		Hardware

		Software

		Electronic Signatures

		Cryptography

		Cryptographic Hash Functions

		Asymmetric Encryption

		Digital Signatures

		Signing

		Create text representation

		Visible TBS

		Format

		Hidden TBS

		Format

		Create Digital Signature

		Signature Methods

		Swedish BankID

		Signature format

		Audit log

		How to validate

		Norwegian BankID

		Signature format

		Audit log

		How to validate

		Telia

		Signature format

		Audit log

		How to validate

		Draw Signature

		Signature format

		Audit log

		How to validate

		API Signature

		Audit log

		How to validate

		SMS Signature

		Audit log

		How to validate

		Email Signature with OneTimePassword

		Audit log

		How to validate

		Click Signature

		Audit log

		How to validate

		Reference documentation

Validation

Egreement AB

Version 3.0.106, 2020-11-10

Table of Contents

PULPOS . . o e
L0 A=) o7 o)
Container Valldationouuuut ettt e e
Agreement CONEEITttt e e et et e e e e ettt et
R TaCIN g S N atUTE S DS, ot ettt ettt e ettt e e et e e et e e e e

Audit Log Validation PrOCESSottt ettt ettt e et e et it

23) =) 4 (o <1

Purpose

Agreements might need validation in case of disputes where one or more contracting parties renounce
that he or she intentionally signed the agreement. Since an agreement e-signed using Egreement’s
service is self-contained, tamper proof and legally binding, validating the agreement can be enough to
settle legal disputes. This document describes all the steps needed to validate the agreement.

Overview

Validating an agreement is quite a complicated process requiring technical skills or software. The
agreement is stored as a PDF container where any proof of the validity of the agreement is contained
inside the actual container. The process spans from controlling the actual agreement content to
validating the Public Key Infrastructure (PKI) signature status.

The parts that should be validated and covered by this and other references documents are:

e Container validation
* Agreement content

* Retracing signature steps

Container Validation

Verify that the container is an agreement PDF container. See the "Container Content" chapter in
Container Format.

Agreement Content

Read and validate all parts of the agreement attached to the container. See "PDF Container" Container
Format how to locate all files of the agreement.

Retracing Signature Steps

The audit log is a list of entries holding all actions associated with the agreement, from creating the
agreement to the last signee signing the agreement. The list is sorted by the time each action was
logged.

Audit Log Validation Process

Validate each audit entry in the log according to the "How to validate" section of each specific audit
entry type chapter. The audit entry types are described in detail in Container Format, where each

entry type is described in a separate chapter.

If validation of one step fails or if the audit entry does not exist in Container Format, the agreement is
considered invalid.

If validation of an entry fails, it is important to analyze why before the agreement is discarded. It is
important to establish if the agreement is considered invalid because someone has tampered with it, or
if there are errors in the tools or in the documentation?

References

Document name Description

Overview Gives an overview of the Egreement agreement
function and links to the other documents.

Container Format Describes the details of how agreement
information is stored within the container PDF.

Signing Describes how Egreement handles the signature
process.

Validation Describes how to validate a container. Makes
references to other documents for validation
details.

BankidValidation Signature Profile for BankID, v2.3

SEID-Prosjektet Leveranse oppgave 3 - SEID-SDO - Dataobjekt for

langtidslagring og utveksling av elektroniske
signaturer, v1.01

Cryptographic Message Syntax https://www.ietf.org/rfc/rfc2630

https://www.ietf.org/rfc/rfc2630

		Validation

		Table of Contents

		Purpose

		Overview

		Container Validation

		Agreement Content

		Retracing Signature Steps

		Audit Log Validation Process

		References

Verlfl kat Status: Signerat av ala

Titel: Foreléggande om vite Skapat: 2021-01-25
ID: f46d8e20-5eee-11eb-h8e9-ab28efe0c83f

Underskrifter

Krister Persson 2120000217

Krister Persson

krister.persson@norrtalje.se

Signerat: 2021-01-25 10:26 BanklD KRISTER PERSSON

Filer

Titel Filnamn Storlek
Foreldggande om vite.docx Forel&ggande om vite.docx 86.6 kB
Handel ser

Datum Tid Handelse

2021-01-25 10:23 Skapat | viaAPI.

2021-01-25 10:26 Signerat | Krister Persson, Krister Persson

Genomfort med: BanklD av KRISTER PERSSON. |P: 2.248.79.61

Verifikat utférdat av Egreement AB

Detta verifikat bekraftar vilka parter som har signerat och innehdller relevant information for att verifiera parternas identitet samt
relevanta handelser i anglutning till signering. Till detta finns separata datefiler bifogade, dessainnehdller kompletterande information av
teknisk karaktar och styrker dokumentens och signaturernas akthet och validitet (for tkomst till filerna, anvand en PDF-l&sare som kan
visa bifogade filer). Hash &r ett fingeravtryck som varje individuellt dokument far for att sakerstélla dess identitet. For mer information,
se bifogad dokumentation.

Verifikation, version: 1.12

